Wyniki badań grupy polskich i włoskich naukowców, opublikowane w prestiżowym czasopiśmie eLife mogą się przyczynić do rozwoju nowych terapii przeciwpadaczkowych - informują przedstawiciele Wydziału Fizyki Uniwersytetu Warszawskiego.
Przyczyna padaczki
Padaczka jest jedną z najczęściej występujących chorób neurologicznych. Na świecie cierpi na nią blisko 60 milionów ludzi, w tym niemal pół miliona Polaków. Choć dostępne leki pozwalają na kontrolowanie napadów, u części pacjentów jednak one nie działają - podkreślili przedstawiciele FUW.
Naukowcy od lat starają się poznać mechanizmy powstawania tego zaburzenia, aby opracować nowe, skuteczniejsze metody jego leczenia. Krokiem do rozwoju nowych terapii przeciwpadaczkowych mogą być wyniki badań naukowców z Wydziału Fizyki Uniwersytetu Warszawskiego oraz Istituto Neurologico Carlo Besta w Mediolanie, opublikowane w prestiżowym czasopiśmie eLife.
Zespół naukowców wykazał, że napady padaczki mogą rozpocząć się od wyładowań neuronów hamujących w mózgu oraz zmian stężeń jonów w środowisku wokół neuronów. Mechanizm ten, zaobserwowany doświadczalnie w modelu zwierzęcym mózgu świnki morskiej, został potwierdzony w modelu komputerowym komórek nerwowych, stworzonym na Wydziale Fizyki UW.
Jeśli otworzymy dowolną książkę do neurologii - dowiemy się, że epilepsja jest zaburzeniem równowagi pomiędzy procesami pobudzenia i hamowania w mózgu. Zakłada się, że zbyt duża aktywność neuronów pobudzających indukuje napad. W 2008 roku zespół naukowców z Istituto Neurologico Carlo Besta w Mediolanie zaobserwował paradoksalny wzrost odpalania neuronów hamujących i spadek aktywności komórek pobudzających w momencie rozpoczęcia napadu – w modelu zwierzęcym mózgu świnki morskiej. Dziesięć lat później udało się potwierdzić występowanie tego mechanizmu także u ludzi.
- wyjaśnia dr hab. Piotr Suffczyński, prof. UW, jeden z autorów publikacji w eLife, cytowany w komunikacie prasowym. Jednak badania z ostatnich kilkunastu lat pokazują, że nie zawsze tak jest.
Przełomowy model napadu padaczkowego
Przez długi czas zakładano, że napad padaczkowy rozwija się, gdy kolejne neurony pobudzają się przez połączenia synaptyczne. Tymczasem w latach 80. XX wieku pokazano, że można zablokować komunikację synaptyczną między neuronami, a napad dalej będzie trwać.
W eksperymencie, przeprowadzonym w 2001 r. wywołano napad padaczkowy w skrawku mózgu in vitro. Dwie części skrawka zostały następnie rozdzielone nacięciem skalpela. I choć doszło do zerwania fizycznego połączenia między dwiema połówkami skrawka – synchronizacja między nimi się utrzymywała, a napad trwał dalej. Naukowcy zadali sobie pytanie: czy za rozwój napadu może odpowiadać coś innego, niż neuroprzekaźniki?
– relacjonuje dr hab. Piotr Suffczyński.
Gdy w kolejnej fazie eksperymentu między skrawkami umieszczono cienką, nieprzepuszczalną błonę, która zablokowała przepływ jonów pomiędzy połówkami, ich aktywności utraciły synchronizację.
Tak potwierdzono, że indukcja i synchronizacja napadów padaczki może mieć przyczyny nie synaptyczne, ale jonowe
- wyjaśnia badacz.
Neurony to komórki naładowane elektrycznie, a nierówne rozmieszczenie jonów dodatnich i ujemnych wewnątrz i na zewnątrz neuronu tworzy spoczynkowy potencjał błonowy komórki. Przepływ jonów przez błonę umożliwia neuronom zmianę swojego potencjału i generowanie krótkich impulsów elektrycznych, czyli potencjałów czynnościowych.
Bazując na danych doświadczalnych naukowcy z Wydziału Fizyki UW skonstruowali model komputerowy symulujący mechanizm przebiegu napadu padaczki.
Nasz biofizycznie realistyczny model obliczeniowy, składa się z 5 komórek: 1 hamującej i 4 pobudzających, z komórek glejowych oraz otoczenia neuronów, w którym następuje ruch jonów. Używając tego modelu jako pierwsi pokazaliśmy potencjalny mechanizm inicjacji napadu przez neurony hamujące poprzez początkowe gromadzenie się pozakomórkowego potasu.
- wylicza badacz.
Model pokazuje też, jak działa mechanizm przyczyniający się do ustania napadów. Nierównowaga sodowo-potasowa prowadzi do zwiększonej aktywności pomp sodowo-potasowych.
Opracowany właśnie model jest pierwszym kompletnym modelem typowego ludzkiego napadu padaczki charakteryzującego się początkowo szybkimi oscylacjami o małej amplitudzie, fazą toniczną, fazą kloniczną, spontanicznym zakończeniem i ponapadowym obniżeniem aktywności.
Wyniki te pokazują, że napad padaczkowy może być procesem fizjologicznym wywołanym destabilizacją poziomu potasu w mózgu.