Działania te prowadzą naukowcy z Politechniki Warszawskiej, Uniwersytetu Medycznego w Poznaniu oraz Uniwersytetu Mikołaja Kopernika w Toruniu w ramach projektu badawczego SteamScaf, finansowanego w ramach Inicjatywy Doskonałości Uczelni Badawczej PW (BioTechMed-3 Advanced).
Ich zdaniem potencjał dziąsła do przekształcania się w inne struktury jest ogromny i otwiera wiele możliwości, jeśli chodzi o zastosowania w medycynie.
Jeśli nam się uda, z pobranych z własnego dziąsła komórek będzie można wytwarzać zawiązki zębów, odbudować strukturę nerwów obwodowych dla tych, którzy potrzebują ich przeszczepu, czy chrząstkę np. dla sportowców, którzy doznali poważnych kontuzji w obrębie stawów.
- wymienia kierująca projektem SteamScaf dr hab. inż. Agnieszka Gadomska-Gajadhur z Wydziału Chemicznego Politechniki Warszawskiej.
Od kilku lat wiadomo, że dziąsło ma znaczny potencjał regeneracyjny. Stosunkowo niedawno potwierdzono w nim obecność mezenchymalnych komórek macierzystych.
W obszarach po ekstrakcji zęba, nawet znacznych rozmiarów ubytki kostne oraz braki tkanek miękkich podlegają odbudowie, oczywiście za wyjątkiem zęba. Ponadto gojenie w jamie ustnej zachodzi często bez tworzenia blizny. Dlatego wyszliśmy z założenia, że dziąsło, a szczególnie jedna populacja jego komórek, może stać się bazą do tworzenia innych tkanek, np. nerwowej, kostnej czy chrzęstnej
- tłumaczy dr Gadomska-Gajadhur.
Badania tego typu zaliczają się do dziedziny nauki zwanej inżynierią tkankową. Łączy ona w sobie wiedzę medyczną, chemiczną oraz metody inżynierii materiałowej i służy do wytwarzania funkcjonalnych zamienników tkanek lub nawet całych narządów. Wszystko po to by wspomóc regenerację uszkodzonych, trudnych do wyleczenia tkanek.
Ważnym aspektem inżynierii tkankowej są hodowle komórkowe. Najpowszechniejszą i do niedawna jedyną metodą ich prowadzenia były płaskie szklane naczynka zwane płytkami Petriego. Jednak w ostatnich latach coraz częściej naukowcy zwracają się w kierunku hodowli trójwymiarowych, które lepiej odzwierciedlają panujące w organizmie warunki. Aby uzyskać trójwymiarowe hodowle potrzebne są jednak specjalne rusztowania, na których komórki będą mogły wzrastać i namnażać się.
Komórki hodowane na płytach Petriego rosną w pojedynczej warstwie, niczym naklejone na materiał cekiny; jedna obok drugiej. W naszych hodowlach na specjalnych rusztowaniach lub w tzw. sferoidach komórki rosną przestrzennie, we wszystkich trzech wymiarach. Taki sposób dużo bardziej przypomina to, co się dzieje naturalnie w organizmie.
- tłumaczy kierowniczka omawianego projektu.
To już koniec implantów?
Materiały, z których zbudowane są wspomniane rusztowania, naukowcy z PW także stworzyli sami.
Sami je wymyśliliśmy i opracowaliśmy. Zostały już zgłoszone do opatentowania. Postawiliśmy na kompleksowe podejście: od syntezy materiału, poprzez wytworzenie rusztowań, aż do hodowli komórkowej. Na początku pobieramy fragmenty dziąseł. W tym momencie są to dziąsła świń, bo nie udało nam się uzyskać dostępu do odpowiedniej ilości materiału ludzkiego, ale w przyszłości będzie to dziąsło tej samej osoby, dla której ma być stworzony implant. Nie stanowi to jednak problemu, bo świnia jest bardzo podobna genetycznie do człowieka
- mówi dr Gadomska-Gajadhur.
Następnie, jak wyjaśnia, z pobranej tkanki izoluje się pożądane komórki, ponieważ na początku znajduje się tam mieszanina wielu różnych typów komórek.
Nam zależy tylko na niektórych z nich, więc za pomocą metod chemicznych rozdzielamy je od siebie. Jeśli uda nam się pozyskać wyselekcjonowane komórki macierzyste, możemy zróżnicować je w odpowiednim kierunku. Jeśli nie, to najpierw inne komórki dziąseł „cofamy” do etapu komórek macierzystych, a dopiero wtedy rozpoczynamy hodowlę i - dzięki dodawaniu odpowiednich czynników wzrostu - różnicowanie w kierunku różnych tkanek: kostnej, chrzęstnej oraz nerwowej. To są bardzo pionierskie badania. Nikt jeszcze nie próbował robić tego co my. Dlatego sprawdzamy obie te metody równolegle, aby stwierdzić, która finalnie okaże się lepsza.
- mówi dr Gadomska-Gajadhur.
Cały ten proces odbywa się poza organizmem, czyli in vitro. Pacjentowi wszczepiałoby się dopiero gotowy „produkt”, czyli fragment wyhodowanej wcześniej tkanki.
Największe nadzieje naukowcy z PW wiążą z wykorzystaniem omawianego rozwiązania w stomatologii.
Byłby to ratunek dla wielu osób, które straciły zęby, czy to w wyniku choroby, czy wypadku, czy próchnicy, a nie mogą mieć założonych klasycznych implantów.
- mówi dr Gadomska-Gajadhur.
Jak dodaje, większość ludzi myśli, że w przypadku braków uzębienia to właśnie tradycyjne implanty są najlepszym rozwiązaniem. Niestety często u pacjenta występuje dodatkowo brak odpowiedniego podparcia kostnego czy też estetyki dziąsłowej.
Opracowywane przez nas złożone materiały mogłyby zastąpić brakujące tkanki lub wspierać ich odbudowę.
- podkreśla badaczka.
Jako ciekawostkę dr Gadomska-Gajadhur przytacza coraz częstsze przypadki zapaleń wokół implantów. Obecnie nie ma skutecznych sposobów ich leczenia, a odsetek tych powikłań wzrasta i powoduje utratę implantów. Pionierski materiał mógłby potencjalnie stymulować odbudowę tkanek służąc nie tylko jako rusztowanie dla komórek, ale również jako gotowe rozwiązanie w postaci aktywnego biologicznie materiału.
Jednak stomatologia to nie jedyna dziedzina, w której innowacyjne implanty mogłyby znaleźć zastosowanie.
Potencjał regeneracyjny dziąsła jest na tyle duży, że mamy nadzieję na wyhodowanie z niego także zupełnie innych zawiązków tkanek. Nasze największe plany dotyczą tkanki nerwowej. Taką wyhodowaną w warunkach laboratoryjnych tkankę moglibyśmy wykorzystywać do przeszczepów np. nerwów obwodowych czy w przeszczepów w obrębie rdzenia kręgowego u osób sparaliżowanych.
- opowiada dr Gadomska-Gajadhur.